Graphene-protected copper and silver plasmonics
نویسندگان
چکیده
منابع مشابه
Graphene-protected copper and silver plasmonics
Plasmonics has established itself as a branch of physics which promises to revolutionize data processing, improve photovoltaics, and increase sensitivity of bio-detection. A widespread use of plasmonic devices is notably hindered by high losses and the absence of stable and inexpensive metal films suitable for plasmonic applications. To this end, there has been a continuous search for alternati...
متن کاملTunneling Plasmonics in Bilayer Graphene.
We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latte...
متن کاملTowards Infrared Plasmonics in Graphene
Graphene plasmons have recently been proposed as an alternative to noble-metal plasmons in the field of photonics, due to its extremely tight light confinement, relatively long-lived collective oscillation, and high tunability via electrostatic gating. Successful support and tuning of graphene plasmonic modes rely on controllable doping of graphene to high carrier densities in nanometer-scale s...
متن کاملRealistic Silver Optical Constants for Plasmonics
Silver remains the preferred conductor for optical and near-infrared plasmonics. Many high-profile studies focus exclusively on performance simulation in such applications. Almost invariably, these use silver optical data either from Palik's 1985 handbook or, more frequently, an earlier Johnson and Christy (J&C) tabulation. These data are inconsistent, making it difficult to ascertain the relia...
متن کاملPlasmonics in graphene at infrared frequencies
We point out that plasmons in doped graphene simultaneously enable low losses and significant wave localization for frequencies below that of the optical phonon branch Oph 0.2 eV. Large plasmon losses occur in the interband regime via excitation of electron-hole pairs , which can be pushed toward higher frequencies for higher-doping values. For sufficiently large dopings, there is a bandwidth o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2014
ISSN: 2045-2322
DOI: 10.1038/srep05517